Design and Analysis of Algorithm Lab 5 | Read Now
Design and Analysis of Algorithm Lab 5
5] Sort a given set of n integer elements using the merge sort method and compute its time complexity. Run the program for varied values of n>5000, and record the time taken to sort. Plot a graph of the time taken varses non-graph sheet. The elements can be read from a file or can be generated using the random number generator. Demonstrate using Java how the divide and conquer method works along with its time complexity analysis: worst case, average case, and best case.
5] Program code
import java.util.Random; import java.util.Scanner; public class lab5 { public static void main(String[] args) { int a[]= new int[100000]; Scanner in = new Scanner(System.in); long start, end; System.out.println("MERGE SORT PROGRAM"); System.out.println("Enter the number of elements to be sorted"); int n = in.nextInt(); Random rand= new Random(); for(int i=0;i<n;i++) a[i]=rand.nextInt(100); System.out.println("Array elements to be sorted are"); for(int i=0; i<n; i++) System.out.print(a[i]+" "); start=System.nanoTime(); mergesort(a,0,n-1); end=System.nanoTime(); System.out.println("\nThe sorted elements are"); for(int i=0; i<n; i++) System.out.print(a[i]+" "); System.out.println("\nThe time taken to sort is "+(end-start)+"ns"); } static void mergesort(int a[], int low, int high) { int mid; if(low < high) { mid = (low+high)/2; mergesort(a, low, mid); mergesort(a, mid+1, high); merge(a, low, mid, high); } } static void merge(int a[], int low, int mid, int high) { int i, j, h, k, b[]= new int[100000]; h=low; i=low; j=mid+1; while((h<=mid) && (j<=high)) { if(a[h] < a[j]) { b[i]=a[h]; h=h+1; } else { b[i] = a[j]; j=j+1; } i = i+1; } if(h > mid) { for(k=j; k<=high; k++) { b[i]=a[k]; i= i+1; } } else { for(k=h;k<=mid;k++) { b[i]=a[k]; i= i+1; } } for(k=low; k<= high; k++) a[k] = b[k]; } }
Output