Design and Analysis of Algorithm Lab 11 | Read Now
Design and Analysis of Algorithm Lab 11
11] Design and implement in java to find a subset of a given set S={S1, S2,….,Sn} of n positive integers whose SUM is equal to a given positive integer d. For example, if S={1,2,5,6,8} and d=9, there are two solutions {1,2,6} and {1,8}. Display a suitable message, if the given problem instance doesn’t have a solution.
11] Program code
import java.util.Scanner; import static java.lang.Math.pow; public class lab11 { void subset(int num,int n, int x[]) { int i; for(i=1;i<=n;i++) x[i]=0; for(i=n;num!=0;i--) { x[i]=num%2; num=num/2; } } public static void main(String[] args) { int a[]=new int[10]; int x[]=new int[10]; int n,d,sum,present=0; int j; System.out.println("enter the number of elements of set"); Scanner sc=new Scanner(System.in); n=sc.nextInt(); System.out.println("enter the elements of set"); for(int i=1;i<=n;i++) a[i]=sc.nextInt(); System.out.println("enter the positive integer sum"); d=sc.nextInt(); if(d>0) { for(int i=1;i<=Math.pow(2,n)-1;i++) { lab11 s=new lab11(); s.subset(i,n,x); sum=0; for(j=1;j<=n;j++) if(x[j]==1) sum=sum+a[j]; if(d==sum) { System.out.print("Subset={"); present=1; for(j=1;j<=n;j++) if(x[j]==1) System.out.print(a[j]+","); System.out.print("}="+d); System.out.println(); } } } if(present==0) System.out.println("Solution does not exists"); } }
Output