9. AI AND MACHINE LEARNING VTU LAB | READ NOW
MACHINE LEARNING VTU LAB k-Nearest Neighbour Algorithm
Program 9. WRITE A PROGRAM TO IMPLEMENT K-NEAREST NEIGHBOUR ALGORITHM TO CLASSIFY THE IRIS DATA SET. PRINT BOTH CORRECT AND WRONG PREDICTIONS. JAVA/PYTHON ML LIBRARY CLASSES CAN BE USED FOR THIS PROBLEM.
Program Code – lab9.py
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import numpy as np
dataset=load_iris()
#print(dataset)
X_train,X_test,y_train,y_test=train_test_split(dataset["data"],dataset["target"],random_state=0)
kn=KNeighborsClassifier(n_neighbors=1)
kn.fit(X_train,y_train)
for i in range(len(X_test)):
x=X_test[i]
x_new=np.array([x])
prediction=kn.predict(x_new)
print("TARGET=",y_test[i],dataset["target_names"][y_test[i]],"PREDICTED=",prediction,dataset["target_names"][prediction])
print(kn.score(X_test,y_test))
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import numpy as np
dataset=load_iris()
#print(dataset)
X_train,X_test,y_train,y_test=train_test_split(dataset["data"],dataset["target"],random_state=0)
kn=KNeighborsClassifier(n_neighbors=1)
kn.fit(X_train,y_train)
for i in range(len(X_test)):
x=X_test[i]
x_new=np.array([x])
prediction=kn.predict(x_new)
print("TARGET=",y_test[i],dataset["target_names"][y_test[i]],"PREDICTED=",prediction,dataset["target_names"][prediction])
print(kn.score(X_test,y_test))
from sklearn.datasets import load_iris from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split import numpy as np dataset=load_iris() #print(dataset) X_train,X_test,y_train,y_test=train_test_split(dataset["data"],dataset["target"],random_state=0) kn=KNeighborsClassifier(n_neighbors=1) kn.fit(X_train,y_train) for i in range(len(X_test)): x=X_test[i] x_new=np.array([x]) prediction=kn.predict(x_new) print("TARGET=",y_test[i],dataset["target_names"][y_test[i]],"PREDICTED=",prediction,dataset["target_names"][prediction]) print(kn.score(X_test,y_test))
MACHINE LEARNING Program Execution – lab9.ipynb
Jupyter Notebook program execution.
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.datasets import load_iris from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split import numpy as np
dataset=load_iris()
#print(dataset)
X_train,X_test,y_train,y_test=train_test_split(dataset["data"],dataset["target"],random_state=0)
dataset=load_iris()
#print(dataset)
X_train,X_test,y_train,y_test=train_test_split(dataset["data"],dataset["target"],random_state=0)
dataset=load_iris() #print(dataset) X_train,X_test,y_train,y_test=train_test_split(dataset["data"],dataset["target"],random_state=0)
kn=KNeighborsClassifier(n_neighbors=1)
kn.fit(X_train,y_train)
kn=KNeighborsClassifier(n_neighbors=1)
kn.fit(X_train,y_train)
kn=KNeighborsClassifier(n_neighbors=1) kn.fit(X_train,y_train)
KNeighborsClassifier(algorithm=’auto’, leaf_size=30, metric=’minkowski’, metric_params=None, n_jobs=None, n_neighbors=1, p=2, weights=’uniform’)
for i in range(len(X_test)):
x=X_test[i]
x_new=np.array([x])
prediction=kn.predict(x_new)
print("TARGET=",y_test[i],dataset["target_names"][y_test[i]],"PREDICTED=",prediction,dataset["target_names"][prediction])
print(kn.score(X_test,y_test))
for i in range(len(X_test)):
x=X_test[i]
x_new=np.array([x])
prediction=kn.predict(x_new)
print("TARGET=",y_test[i],dataset["target_names"][y_test[i]],"PREDICTED=",prediction,dataset["target_names"][prediction])
print(kn.score(X_test,y_test))
for i in range(len(X_test)): x=X_test[i] x_new=np.array([x]) prediction=kn.predict(x_new) print("TARGET=",y_test[i],dataset["target_names"][y_test[i]],"PREDICTED=",prediction,dataset["target_names"][prediction]) print(kn.score(X_test,y_test))
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
show more (open the raw output data in a text editor) ...
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 1 versicolor PREDICTED= [2] ['virginica']
0.9736842105263158
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
show more (open the raw output data in a text editor) ...
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 1 versicolor PREDICTED= [2] ['virginica']
0.9736842105263158
TARGET= 2 virginica PREDICTED= [2] ['virginica'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 0 setosa PREDICTED= [0] ['setosa'] TARGET= 2 virginica PREDICTED= [2] ['virginica'] TARGET= 0 setosa PREDICTED= [0] ['setosa'] TARGET= 2 virginica PREDICTED= [2] ['virginica'] TARGET= 0 setosa PREDICTED= [0] ['setosa'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 2 virginica PREDICTED= [2] ['virginica'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 0 setosa PREDICTED= [0] ['setosa'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 0 setosa PREDICTED= [0] ['setosa'] TARGET= 0 setosa PREDICTED= [0] ['setosa'] TARGET= 2 virginica PREDICTED= [2] ['virginica'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 0 setosa PREDICTED= [0] ['setosa'] TARGET= 0 setosa PREDICTED= [0] ['setosa'] TARGET= 2 virginica PREDICTED= [2] ['virginica'] show more (open the raw output data in a text editor) ... TARGET= 2 virginica PREDICTED= [2] ['virginica'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 0 setosa PREDICTED= [0] ['setosa'] TARGET= 1 versicolor PREDICTED= [2] ['virginica'] 0.9736842105263158
Alternative – alt lab9.ipynb
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix
import pandas as pd
import numpy as np
from sklearn import datasets
import pandas as pd
import numpy as np
from sklearn import datasets
import pandas as pd import numpy as np from sklearn import datasets
iris=datasets.load_iris()
iris_data=iris.data
iris_labels=iris.target
print(iris_data)
iris=datasets.load_iris()
iris_data=iris.data
iris_labels=iris.target
print(iris_data)
iris=datasets.load_iris() iris_data=iris.data iris_labels=iris.target print(iris_data)
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5. 3.4 1.5 0.2]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5.4 3.7 1.5 0.2]
[4.8 3.4 1.6 0.2]
[4.8 3. 1.4 0.1]
[4.3 3. 1.1 0.1]
[5.8 4. 1.2 0.2]
[5.7 4.4 1.5 0.4]
[5.4 3.9 1.3 0.4]
[5.1 3.5 1.4 0.3]
[5.7 3.8 1.7 0.3]
[5.1 3.8 1.5 0.3]
[5.4 3.4 1.7 0.2]
[5.1 3.7 1.5 0.4]
[4.6 3.6 1. 0.2]
[5.1 3.3 1.7 0.5]
[4.8 3.4 1.9 0.2]
show more (open the raw output data in a text editor) ...
[6.7 3. 5.2 2.3]
[6.3 2.5 5. 1.9]
[6.5 3. 5.2 2. ]
[6.2 3.4 5.4 2.3]
[5.9 3. 5.1 1.8]]
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5. 3.4 1.5 0.2]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5.4 3.7 1.5 0.2]
[4.8 3.4 1.6 0.2]
[4.8 3. 1.4 0.1]
[4.3 3. 1.1 0.1]
[5.8 4. 1.2 0.2]
[5.7 4.4 1.5 0.4]
[5.4 3.9 1.3 0.4]
[5.1 3.5 1.4 0.3]
[5.7 3.8 1.7 0.3]
[5.1 3.8 1.5 0.3]
[5.4 3.4 1.7 0.2]
[5.1 3.7 1.5 0.4]
[4.6 3.6 1. 0.2]
[5.1 3.3 1.7 0.5]
[4.8 3.4 1.9 0.2]
show more (open the raw output data in a text editor) ...
[6.7 3. 5.2 2.3]
[6.3 2.5 5. 1.9]
[6.5 3. 5.2 2. ]
[6.2 3.4 5.4 2.3]
[5.9 3. 5.1 1.8]]
[[5.1 3.5 1.4 0.2] [4.9 3. 1.4 0.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5. 3.6 1.4 0.2] [5.4 3.9 1.7 0.4] [4.6 3.4 1.4 0.3] [5. 3.4 1.5 0.2] [4.4 2.9 1.4 0.2] [4.9 3.1 1.5 0.1] [5.4 3.7 1.5 0.2] [4.8 3.4 1.6 0.2] [4.8 3. 1.4 0.1] [4.3 3. 1.1 0.1] [5.8 4. 1.2 0.2] [5.7 4.4 1.5 0.4] [5.4 3.9 1.3 0.4] [5.1 3.5 1.4 0.3] [5.7 3.8 1.7 0.3] [5.1 3.8 1.5 0.3] [5.4 3.4 1.7 0.2] [5.1 3.7 1.5 0.4] [4.6 3.6 1. 0.2] [5.1 3.3 1.7 0.5] [4.8 3.4 1.9 0.2] show more (open the raw output data in a text editor) ... [6.7 3. 5.2 2.3] [6.3 2.5 5. 1.9] [6.5 3. 5.2 2. ] [6.2 3.4 5.4 2.3] [5.9 3. 5.1 1.8]]
x_train, x_test, y_train, y_test=(train_test_split(iris_data, iris_labels, test_size=0.20))
classifier=KNeighborsClassifier(n_neighbors=6)
classifier.fit(x_train, y_train)
y_pred=classifier.predict(x_test)
x_train, x_test, y_train, y_test=(train_test_split(iris_data, iris_labels, test_size=0.20))
classifier=KNeighborsClassifier(n_neighbors=6)
classifier.fit(x_train, y_train)
y_pred=classifier.predict(x_test)
x_train, x_test, y_train, y_test=(train_test_split(iris_data, iris_labels, test_size=0.20)) classifier=KNeighborsClassifier(n_neighbors=6) classifier.fit(x_train, y_train) y_pred=classifier.predict(x_test)
print("accuracy is")
print(classification_report(y_test, y_pred))
print("accuracy is")
print(classification_report(y_test, y_pred))
print("accuracy is") print(classification_report(y_test, y_pred))
accuracy is
precision recall f1-score support
0 1.00 1.00 1.00 9
1 1.00 0.93 0.96 14
2 0.88 1.00 0.93 7
accuracy 0.97 30
macro avg 0.96 0.98 0.97 30
weighted avg 0.97 0.97 0.97 30
accuracy is
precision recall f1-score support
0 1.00 1.00 1.00 9
1 1.00 0.93 0.96 14
2 0.88 1.00 0.93 7
accuracy 0.97 30
macro avg 0.96 0.98 0.97 30
weighted avg 0.97 0.97 0.97 30
accuracy is precision recall f1-score support 0 1.00 1.00 1.00 9 1 1.00 0.93 0.96 14 2 0.88 1.00 0.93 7 accuracy 0.97 30 macro avg 0.96 0.98 0.97 30 weighted avg 0.97 0.97 0.97 30