9. AI AND MACHINE LEARNING VTU LAB | READ NOW

MACHINE LEARNING VTU LAB k-Nearest Neighbour Algorithm

Program 9. WRITE A PROGRAM TO IMPLEMENT K-NEAREST NEIGHBOUR ALGORITHM TO CLASSIFY THE IRIS DATA SET. PRINT BOTH CORRECT AND WRONG PREDICTIONS. JAVA/PYTHON ML LIBRARY CLASSES CAN BE USED FOR THIS PROBLEM.


Program Code – lab9.py

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import numpy as np
dataset=load_iris()
#print(dataset)
X_train,X_test,y_train,y_test=train_test_split(dataset["data"],dataset["target"],random_state=0)
kn=KNeighborsClassifier(n_neighbors=1)
kn.fit(X_train,y_train)
for i in range(len(X_test)):
x=X_test[i]
x_new=np.array([x])
prediction=kn.predict(x_new)
print("TARGET=",y_test[i],dataset["target_names"][y_test[i]],"PREDICTED=",prediction,dataset["target_names"][prediction])
print(kn.score(X_test,y_test))
from sklearn.datasets import load_iris from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split import numpy as np dataset=load_iris() #print(dataset) X_train,X_test,y_train,y_test=train_test_split(dataset["data"],dataset["target"],random_state=0) kn=KNeighborsClassifier(n_neighbors=1) kn.fit(X_train,y_train) for i in range(len(X_test)): x=X_test[i] x_new=np.array([x]) prediction=kn.predict(x_new) print("TARGET=",y_test[i],dataset["target_names"][y_test[i]],"PREDICTED=",prediction,dataset["target_names"][prediction]) print(kn.score(X_test,y_test))
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import numpy as np

dataset=load_iris()
#print(dataset)
X_train,X_test,y_train,y_test=train_test_split(dataset["data"],dataset["target"],random_state=0)

kn=KNeighborsClassifier(n_neighbors=1)
kn.fit(X_train,y_train)

for i in range(len(X_test)):
    x=X_test[i]
    x_new=np.array([x])
    prediction=kn.predict(x_new)
    print("TARGET=",y_test[i],dataset["target_names"][y_test[i]],"PREDICTED=",prediction,dataset["target_names"][prediction])
print(kn.score(X_test,y_test))

MACHINE LEARNING Program Execution – lab9.ipynb

Jupyter Notebook program execution.

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.datasets import load_iris from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split import numpy as np
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import numpy as np
Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
dataset=load_iris()
#print(dataset)
X_train,X_test,y_train,y_test=train_test_split(dataset["data"],dataset["target"],random_state=0)
dataset=load_iris() #print(dataset) X_train,X_test,y_train,y_test=train_test_split(dataset["data"],dataset["target"],random_state=0)
dataset=load_iris()
#print(dataset)
X_train,X_test,y_train,y_test=train_test_split(dataset["data"],dataset["target"],random_state=0)
Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
kn=KNeighborsClassifier(n_neighbors=1)
kn.fit(X_train,y_train)
kn=KNeighborsClassifier(n_neighbors=1) kn.fit(X_train,y_train)
kn=KNeighborsClassifier(n_neighbors=1)
kn.fit(X_train,y_train)

KNeighborsClassifier(algorithm=’auto’, leaf_size=30, metric=’minkowski’, metric_params=None, n_jobs=None, n_neighbors=1, p=2, weights=’uniform’)

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
for i in range(len(X_test)):
x=X_test[i]
x_new=np.array([x])
prediction=kn.predict(x_new)
print("TARGET=",y_test[i],dataset["target_names"][y_test[i]],"PREDICTED=",prediction,dataset["target_names"][prediction])
print(kn.score(X_test,y_test))
for i in range(len(X_test)): x=X_test[i] x_new=np.array([x]) prediction=kn.predict(x_new) print("TARGET=",y_test[i],dataset["target_names"][y_test[i]],"PREDICTED=",prediction,dataset["target_names"][prediction]) print(kn.score(X_test,y_test))
for i in range(len(X_test)):
    x=X_test[i]
    x_new=np.array([x])
    prediction=kn.predict(x_new)
    print("TARGET=",y_test[i],dataset["target_names"][y_test[i]],"PREDICTED=",prediction,dataset["target_names"][prediction])
print(kn.score(X_test,y_test))
Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
show more (open the raw output data in a text editor) ...
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 1 versicolor PREDICTED= [2] ['virginica']
0.9736842105263158
TARGET= 2 virginica PREDICTED= [2] ['virginica'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 0 setosa PREDICTED= [0] ['setosa'] TARGET= 2 virginica PREDICTED= [2] ['virginica'] TARGET= 0 setosa PREDICTED= [0] ['setosa'] TARGET= 2 virginica PREDICTED= [2] ['virginica'] TARGET= 0 setosa PREDICTED= [0] ['setosa'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 2 virginica PREDICTED= [2] ['virginica'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 0 setosa PREDICTED= [0] ['setosa'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 0 setosa PREDICTED= [0] ['setosa'] TARGET= 0 setosa PREDICTED= [0] ['setosa'] TARGET= 2 virginica PREDICTED= [2] ['virginica'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 0 setosa PREDICTED= [0] ['setosa'] TARGET= 0 setosa PREDICTED= [0] ['setosa'] TARGET= 2 virginica PREDICTED= [2] ['virginica'] show more (open the raw output data in a text editor) ... TARGET= 2 virginica PREDICTED= [2] ['virginica'] TARGET= 1 versicolor PREDICTED= [1] ['versicolor'] TARGET= 0 setosa PREDICTED= [0] ['setosa'] TARGET= 1 versicolor PREDICTED= [2] ['virginica'] 0.9736842105263158
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 2 virginica PREDICTED= [2] ['virginica']
show more (open the raw output data in a text editor) ...

TARGET= 2 virginica PREDICTED= [2] ['virginica']
TARGET= 1 versicolor PREDICTED= [1] ['versicolor']
TARGET= 0 setosa PREDICTED= [0] ['setosa']
TARGET= 1 versicolor PREDICTED= [2] ['virginica']
0.9736842105263158

Alternative – alt lab9.ipynb

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
import pandas as pd
import numpy as np
from sklearn import datasets
import pandas as pd import numpy as np from sklearn import datasets
import pandas as pd
import numpy as np
from sklearn import datasets
Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
iris=datasets.load_iris()
iris_data=iris.data
iris_labels=iris.target
print(iris_data)
iris=datasets.load_iris() iris_data=iris.data iris_labels=iris.target print(iris_data)
iris=datasets.load_iris()
iris_data=iris.data
iris_labels=iris.target
print(iris_data)
Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5. 3.4 1.5 0.2]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5.4 3.7 1.5 0.2]
[4.8 3.4 1.6 0.2]
[4.8 3. 1.4 0.1]
[4.3 3. 1.1 0.1]
[5.8 4. 1.2 0.2]
[5.7 4.4 1.5 0.4]
[5.4 3.9 1.3 0.4]
[5.1 3.5 1.4 0.3]
[5.7 3.8 1.7 0.3]
[5.1 3.8 1.5 0.3]
[5.4 3.4 1.7 0.2]
[5.1 3.7 1.5 0.4]
[4.6 3.6 1. 0.2]
[5.1 3.3 1.7 0.5]
[4.8 3.4 1.9 0.2]
show more (open the raw output data in a text editor) ...
[6.7 3. 5.2 2.3]
[6.3 2.5 5. 1.9]
[6.5 3. 5.2 2. ]
[6.2 3.4 5.4 2.3]
[5.9 3. 5.1 1.8]]
[[5.1 3.5 1.4 0.2] [4.9 3. 1.4 0.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5. 3.6 1.4 0.2] [5.4 3.9 1.7 0.4] [4.6 3.4 1.4 0.3] [5. 3.4 1.5 0.2] [4.4 2.9 1.4 0.2] [4.9 3.1 1.5 0.1] [5.4 3.7 1.5 0.2] [4.8 3.4 1.6 0.2] [4.8 3. 1.4 0.1] [4.3 3. 1.1 0.1] [5.8 4. 1.2 0.2] [5.7 4.4 1.5 0.4] [5.4 3.9 1.3 0.4] [5.1 3.5 1.4 0.3] [5.7 3.8 1.7 0.3] [5.1 3.8 1.5 0.3] [5.4 3.4 1.7 0.2] [5.1 3.7 1.5 0.4] [4.6 3.6 1. 0.2] [5.1 3.3 1.7 0.5] [4.8 3.4 1.9 0.2] show more (open the raw output data in a text editor) ... [6.7 3. 5.2 2.3] [6.3 2.5 5. 1.9] [6.5 3. 5.2 2. ] [6.2 3.4 5.4 2.3] [5.9 3. 5.1 1.8]]
[[5.1 3.5 1.4 0.2]
 [4.9 3.  1.4 0.2]
 [4.7 3.2 1.3 0.2]
 [4.6 3.1 1.5 0.2]
 [5.  3.6 1.4 0.2]
 [5.4 3.9 1.7 0.4]
 [4.6 3.4 1.4 0.3]
 [5.  3.4 1.5 0.2]
 [4.4 2.9 1.4 0.2]
 [4.9 3.1 1.5 0.1]
 [5.4 3.7 1.5 0.2]
 [4.8 3.4 1.6 0.2]
 [4.8 3.  1.4 0.1]
 [4.3 3.  1.1 0.1]
 [5.8 4.  1.2 0.2]
 [5.7 4.4 1.5 0.4]
 [5.4 3.9 1.3 0.4]
 [5.1 3.5 1.4 0.3]
 [5.7 3.8 1.7 0.3]
 [5.1 3.8 1.5 0.3]
 [5.4 3.4 1.7 0.2]
 [5.1 3.7 1.5 0.4]
 [4.6 3.6 1.  0.2]
 [5.1 3.3 1.7 0.5]
 [4.8 3.4 1.9 0.2]
show more (open the raw output data in a text editor) ...

 [6.7 3.  5.2 2.3]
 [6.3 2.5 5.  1.9]
 [6.5 3.  5.2 2. ]
 [6.2 3.4 5.4 2.3]
 [5.9 3.  5.1 1.8]]
Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
x_train, x_test, y_train, y_test=(train_test_split(iris_data, iris_labels, test_size=0.20))
classifier=KNeighborsClassifier(n_neighbors=6)
classifier.fit(x_train, y_train)
y_pred=classifier.predict(x_test)
x_train, x_test, y_train, y_test=(train_test_split(iris_data, iris_labels, test_size=0.20)) classifier=KNeighborsClassifier(n_neighbors=6) classifier.fit(x_train, y_train) y_pred=classifier.predict(x_test)
x_train, x_test, y_train, y_test=(train_test_split(iris_data, iris_labels, test_size=0.20))
classifier=KNeighborsClassifier(n_neighbors=6)
classifier.fit(x_train, y_train)
y_pred=classifier.predict(x_test)
Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
print("accuracy is")
print(classification_report(y_test, y_pred))
print("accuracy is") print(classification_report(y_test, y_pred))
print("accuracy is")
print(classification_report(y_test, y_pred))
Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
accuracy is
precision recall f1-score support
0 1.00 1.00 1.00 9
1 1.00 0.93 0.96 14
2 0.88 1.00 0.93 7
accuracy 0.97 30
macro avg 0.96 0.98 0.97 30
weighted avg 0.97 0.97 0.97 30
accuracy is precision recall f1-score support 0 1.00 1.00 1.00 9 1 1.00 0.93 0.96 14 2 0.88 1.00 0.93 7 accuracy 0.97 30 macro avg 0.96 0.98 0.97 30 weighted avg 0.97 0.97 0.97 30
accuracy is
              precision    recall  f1-score   support

           0       1.00      1.00      1.00         9
           1       1.00      0.93      0.96        14
           2       0.88      1.00      0.93         7

    accuracy                           0.97        30
   macro avg       0.96      0.98      0.97        30
weighted avg       0.97      0.97      0.97        30

Leave a Reply

Your email address will not be published. Required fields are marked *

WhatsApp Icon Join For Job Alerts