1. AI AND MACHINE LEARNING VTU LAB | READ NOW
MACHINE LEARNING VTU LAB
1. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a . CSV file.
Program Code – lab1.py
import csv hypo = ['%','%','%','%','%','%']; with open('trainingdata.csv') as csv_file: readcsv = csv.reader(csv_file, delimiter=',') print(readcsv) data = [] print("\nThe given training examples are:") for row in readcsv: print(row) if row[len(row)-1].upper() == "YES": data.append(row) print("\nThe positive examples are:"); for x in data: print(x); print("\n"); TotalExamples = len(data); i=0; j=0; k=0; print("The steps of the Find-s algorithm are :\n",hypo); list = []; p=0; d=len(data[p])-1; for j in range(d): list.append(data[i][j]); hypo=list; i=1; for i in range(TotalExamples): for k in range(d): if hypo[k]!=data[i][k]: hypo[k]='?'; k=k+1; else: hypo[k]; print(hypo); i=i+1; print("\nThe maximally specific Find-s hypothesis for the given training examples is :"); list=[]; for i in range(d): list.append(hypo[i]); print(list);
MACHINE LEARNING Program Execution – LAB1.ipynb
Jupyter Notebook program execution.
import csv hypo = ['%','%','%','%','%','%']; with open('trainingdata.csv') as csv_file: readcsv = csv.reader(csv_file, delimiter=',') print(readcsv) data = [] print("\nThe given training examples are:") for row in readcsv: print(row) if row[len(row)-1].upper() == "YES": data.append(row)
The given training examples are:
[‘sky’, ‘airTemp’, ‘humidity’, ‘wind’, ‘water’, ‘forecast’, ‘enjoySport’]
[‘Sunny’, ‘Warm’, ‘Normal’, ‘Strong’, ‘Warm’, ‘Same’, ‘Yes’]
[‘Sunny’, ‘Warm’, ‘High’, ‘Strong’, ‘Warm’, ‘Same’, ‘Yes’]
[‘Rainy’, ‘Cold’, ‘High’, ‘Strong’, ‘Warm’, ‘Change’, ‘No’]
[‘Sunny’, ‘Warm’, ‘High’, ‘Strong’, ‘Cool’, ‘Change’, ‘Yes’]
print("\nThe positive examples are:"); for x in data: print(x); print("\n");
The positive examples are:
[‘Sunny’, ‘Warm’, ‘Normal’, ‘Strong’, ‘Warm’, ‘Same’, ‘Yes’]
[‘Sunny’, ‘Warm’, ‘High’, ‘Strong’, ‘Warm’, ‘Same’, ‘Yes’]
[‘Sunny’, ‘Warm’, ‘High’, ‘Strong’, ‘Cool’, ‘Change’, ‘Yes’]
TotalExamples = len(data); i=0; j=0; k=0; print("The steps of the Find-s algorithm are :\n",hypo); list = []; p=0; d=len(data[p])-1; for j in range(d): list.append(data[i][j]); hypo=list; i=1; for i in range(TotalExamples): for k in range(d): if hypo[k]!=data[i][k]: hypo[k]='?'; k=k+1; else: hypo[k]; print(hypo); i=i+1;
The steps of the Find-s algorithm are :
[‘%’, ‘%’, ‘%’, ‘%’, ‘%’, ‘%’]
[‘Sunny’, ‘Warm’, ‘Normal’, ‘Strong’, ‘Warm’, ‘Same’]
[‘Sunny’, ‘Warm’, ‘?’, ‘Strong’, ‘Warm’, ‘Same’]
[‘Sunny’, ‘Warm’, ‘?’, ‘Strong’, ‘?’, ‘?’]
print("\nThe maximally specific Find-s hypothesis for the given training examples is :"); list=[]; for i in range(d): list.append(hypo[i]); print(list);
The maximally specific Find-s hypothesis for the given training examples is :
[‘Sunny’, ‘Warm’, ‘?’, ‘Strong’, ‘?’, ‘?’]
Download the Dataset