Design and Analysis of Algorithm Lab 12 | Read Now
Design and Analysis of Algorithm Lab 12
12] Design and implement in Java to find all Hamiltonian Cycles in a connected undirected Graph G of n vertices using the backtracking principle.
12] Program code
import java.util.Scanner; public class lab12 { static int x[] = new int[10]; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int i,j,x1, x2, edges, n; int g[][] = new int[10][10]; System.out.print("Enter No. of Vertices: "); n = sc.nextInt(); for(i=1;i<=n;i++) { for(j=1;j<=n;j++) { g[i][j] = 0; x[i]=0; } } System.out.print("Enter No. of Edges: "); edges = sc.nextInt(); for(i=1;i<=edges;i++) { System.out.println("Enter the Edge"+i+": "); x1 = sc.nextInt(); x2 = sc.nextInt(); g[x1][x2] = 1; g[x2][x1] = 1; } x[1] = 1; System.out.println("\nHamiltonian Cycle"); hcycle(g,n,2); } public static void nextvalue(int g[][],int n,int k) { int j; while(true) { x[k] = (x[k] + 1) % (n+1); if(x[k] == 0) return; if(g[x[k-1]][x[k]] == 1) { for(j=1;j<=k-1;j++) { if(x[j] == x[k] ) break; } if(j == k) { if((k<n) || ((k==n) && (g[x[n]][x[1]] == 1))) return; } } } } public static void hcycle(int g[][],int n, int k) { int i; while(true) { nextvalue(g,n,k); if(x[k]== 0) return; if(k==n) { for(i=1;i<=n;i++) System.out.print(x[i]+"-->"); System.out.println(x[1]+"\n"); } else hcycle(g,n,k+1); } } }
Output